Биоценозы и биогеоценозы (основы синэкологии)




Скачать 298.21 Kb.
НазваниеБиоценозы и биогеоценозы (основы синэкологии)
страница2/3
Дата конвертации28.02.2013
Размер298.21 Kb.
ТипЛекция
1   2   3

2.1.1. Видовая и пространственная структуры экосистемы


Структура экосистемы многопланова. Различают видовую, пространственную и трофическую структуры.

Видовая структура экосистемы - это разнообразие видов, взаимосвязь и соотношение их численности. Различные сообщества, входящие в состав экосистемы, состоят из разного числа видов - видового разнообразия. В таежном лесу, например, на площади в 100 м , как правило, произрастают растения около 30 различных видов, а на лугу вдоль реки - в два раза больше. Видовое разнообразие степей еще шире: на той же площади произрастают сотни растений.

Видовое разнообразие зависит от соотношения численности видов в экосистеме. Например, в пригородном лесу обитают 1000 птиц: по 100 особей 10 разных видов. В другом пригородном лесу также 1000 птиц этих же 10 видов, но 920 из птиц - вороны и галки (двух видов), а особи остальных 8 видов встречаются значительно реже, в среднем по 10 особей. Ясно, что во втором случае ситуация вызывает тревогу: перспективы сохранения малочисленных видов незначительны.

Уменьшение видового разнообразия угрожает самому существованию вида в силу сокращения генетического разнообразия - запаса рецессивных аллелей, обеспечивающего приспособленность популяций к меняющимся условиям среды обитания.

В свою очередь, видовое разнообразие служит основой экологического разнообразия - разнообразия экосистем. Совокупность генетического, видового и экологического разнообразия составляет биологическое разнообразиепланеты.

Деятельность человека по влиянию на биологическое разнообразие планеты превосходит все известные в прошлом геологические катастрофы. Очень важно не допустить такого снижения биоразнообразия, которое привело бы к снижению устойчивости экосистем, перешло бы границы их самовосстановительных возможностей.

Пространственная структура экосистемы. Популяции разных видов в экосистеме распределены определенным образом - образуют пространственную структуру. Различают вертикальную и горизонтальную структуры экосистемы.

Основу вертикальной структуры формирует растительность.

Растительное сообщество определяет, как правило, облик экосистемы. Растения в значительной мере влияют на условия существования остальных видов. В лесу это крупные деревья, на лугах и в степях - многолетние травы, а в тундрах господствуют мхи и кустарнички.

Обитая совместно, растения одинаковой высоты создают своего рода этажи - ярусы. В лесу, например, высокие деревья составляют первый (верхний) ярус, второй ярус формируется из молодых особей деревьев верхнего яруса и из взрослых деревьев, меньших по высоте. Третий ярус состоит из кустарников, четвертый - из высоких трав. Самый нижний ярус, куда попадает совсем мало света, составляют мхи и низкорослые травы.

Ярусность наблюдается также в травянистых сообществах (лугах, степях, саваннах). Имеется и подземная ярусность, что связано с разной глубиной проникновения в почву корневых систем растений: у одних корни уходят глубоко в почву, достигают уровня грунтовых вод, другие имеют поверхностную корневую систему, улавливающую воду и элементы питания из верхнего почвенного слоя.

Благодаря ярусному расположению растения наиболее эффективно используют световой поток, при этом снижается конкуренция: светолюбивые растения занимают верхний ярус, а теневыносливые развиваются под их пологом.

Животные тоже приспособлены к жизни в том или ином растительном ярусе (некоторые вообще не покидают свой ярус). Например, среди насекомых выделяют: подземных, обитающих в почве (медведка, норный паук); наземных, поверхностных (муравей, щитник); обитателей травостоя (кузнечик, тля, божья коровка) и обитателей более высоких ярусов (различные мухи, стрекозы, бабочки).

Вследствие неоднородности рельефа, свойств почвы, различных биологических особенностей растения и в горизонтальном направлении располагаются микрогруппами, различными по видовому составу. Это явление носит название мозаичности. Мозаичность растительности - это своего рода "орнамент", образованный скоплениями растений разных видов.

Благодаря вертикальной и горизонтальной структурам обитающие в экосистеме организмы более эффективно используют минеральные вещества почвы, влагу, световой поток.

2.1.2. Функциональная структура экосистем

Как уже было отмечено, все организмы, входящее в биоценоз по способу питания, подразделяют на автотрофов и гетеротрофов.

Автотрофы (от греч. autos – сам) – осуществляют превращение неорганических веществ в органические (зеленые растения и некоторые микроорганизмы).

По механизму превращения неорганических веществ в органические автотрофы делится на:

а) фототрофы (фотосинтез) – зеленые растения, сине-зеленые водоросли;

б) хемотрофы (хемосинтез) – серные бактерии и др.

Гетеротрофы (от греч. разный) – используют для питания готовые органические вещества (все животные и человек, паразиты, грибы и др). По современным данным Дж. Н. Андерсона, гетеротрофов делят на:

а) некротрофы (от греч. nekros – мертвый) трупноядные животные;

б) биотрофы (от греч. biosis – живой) питаются за счет других живых

организмов (паразиты, кровососы и др);

в) сапротрофы (от греч. sapros – гниль) питаются отмершей органикой.

Существуют организмы и со смешанным типом питания, которых наз. миксотрофами (П.Пфеффер. от англ. mix – смешивать).

Поддержание жизнедеятельности организмов и круговорот веществ в экосистемах возможно только за счет постоянного притока энергии.

В конечном итоге вся жизнь на земле существует за счет энергии солнечного излучения, которая переводится фотосинтезирующими организмами (автотрофами) в химические связи органических соединений. Все остальные организмы получают энергию с пищей. Все живые существа являются объектами питания других, т.е. связаны между собой энергетическими отношениями. Пищевые связи в сообществах – это механизмы передачи энергии от одного организма к другому.

Перенос энергии пищи от ее источника – автотрофов (растений) – через ряд организмов, происходящий путем поедания одних организмов другими, называется пищевой (трофической) цепью.

Для высвобождения запасенной химической энергии гетеротрофы разлагают органические соединения на исходные неорганические компоненты, завершая тем самым круговорот веществ.

По отношению к трофическим (пищевым) связям организмы экосистемы подразделяются на продуцентов, консументов и редуцентов.

Продуценты (производители первичной продукции) - организмы, способные из неорганических веществ создавать органические, т.е. производить и накапливать потенциальную энергию в форме химической энергии, которая содержится в синтезированных органических веществах (углеводах, жирах, белках). В наземных экосистемах такой синтез осуществляют, главным образом, цветковые растения; в водной среде – микроскопические планктонные водоросли.

Консументы (т.е потребители) – это организмы, потребляющие органическое вещество продуцентов или других консументов и трансформирующие его в новые формы. Роль консументов выполняют в природе, в основном, животные. Можно выделить консументы различного порядка. Первичные консументы питаются автотрофными (фотосинтезирующими) продуцентами. Это, в основном, травоядные животные. Вторичные консументы питаются травоядными организмами, т.е. являются плотоядными формами. Третичными являются консументы, питающиеся вторичными консументами и т.д. Можно выделить также консументов 4-го и 5-го порядка.

Редуценты живут за счет мертвого органического вещества, переводя его вновь в неорганическое соединение. Это, главным образом, бактерии и грибы. Они являются как бы завершающим звеном биологического круговорота веществ.

Место каждого звена в цепи питания называют трофическим уровнем или цепью питания.

Первый трофический уровень – это всегда продуценты, создатели органической массы; второй – растительноядные консументы; третий – плотоядные, четвертый – организмы, потребляющие других плотоядных. По мере продвижения по цепи хищников животные все более увеличиваются в размерах и уменьшаются численно.

Понятие пищевой цепи удобно для изложения, хотя и носит несколько упрощенный характер.

Линейные пищевые цепи - большая редкость в природе. Как правило, пищевые цепи в экосистеме тесно переплетаются. Совокупность пищевых связей в экосистеме образует пищевые сети, в которых многие консументы служат пищей нескольким членам экосистемы. В то же время некоторые животные могут принадлежать сразу к нескольким трофическим уровням, так как питаются и растительной, и животной пищей, то есть являются в Интересный пример пищевых сетей можно обнаружить при прочтении стихотворения Э. Дарвина, деда знаменитого эволюциониста Ч. Дарвина:

"Свирепый волк с кормящею волчат волчицею - гроза невинных стад;

Орел, стремясь из-под небес стрелою, грозит голубке смертью злою;

Голубка ж, как овца, должна, кормясь, губить ростки и семена.

Охотнице-сове, средь ночи темной, не жаль певца любви и неги томной,

А соловей съедает светляка, не посмотрев на прелесть огонька.

Светляк же, ночи светоч оживленный, вползая вверх, цветок съедает сонный".

сеядными (например, м Правило экологической пирамиды. Пищевые сети, возникающие в экосистеме, имеют структуру, для которой характерно определенное число организмов на каждом трофическом уровне. Замечено, что число организмов прямо пропорционально уменьшается при переходе с одного трофического уровня на другой. Такая закономерность получила название "правило экологической пирамиды". В данном случае рассмотрена пирамида чисел. Она может нарушаться, если мелкие хищники живут благодаря групповой охоте на крупных животных.

2.2. Продуктивность экосистем

В процессе жизнедеятельности биоценоза создается и расходуется органическое вещество, т. е. соответствующая экосистема обладает определенной продуктивностью биомас­сы. Биомассу измеряют в единицах массы или выражают ко­личеством энергии, заключенной в тканях.

Понятия «продукция» и «продуктивность» хотя и выра­жены однокоренными словами, но в экологии (как и в биоло­гии) имеют различный смысл. Продуктивность — это скорость производства биомассы в единицу времени, которую нельзя взве­сить, а можно только рассчитать в единицах энергии или накопле­ния органических веществ. В качестве синонима термина «про­дуктивность» Ю. Одум предложил использовать термин «ско­рость продуцирования».

Продуктивность экосистемы говорит о ее «богатстве». В бо­гатом или продуктивном сообществе больше организмов, чем в менее продуктивном, хотя иногда бывает и наоборот, когда ор­ганизмы в продуктивном сообществе быстрее изымаются или «оборачиваются». Так, урожай травы на корню богатого паст­бища, выедаемого скотом, может быть гораздо меньше, чем на менее продуктивном пастбище, на которое не выгоняли скот.

Наличную биомассу или урожаи на корню на данное время нельзя путать с продуктивностью.

Различают также продуктивность текущую и об­щую. Например, в некоторых конкретных условиях 1 га со­снового леса способен за период своего существования и роста образовать 200 м3 древесной массы — это его общая продук­тивность. Однако за один год этот лес создает всего лишь около 2 м3 древесины, что является текущей продуктивностью или годовым приростом.

При поедании одних организмов другими пища (вещество и энергия) переходит с одного трофического уровня на последующий. Непереваренная часть пищи выбрасывается. Живот­ные, обладающие пищеварительным каналом, выделяют фе­калии (экскременты) и конечные органические отходы метабо­лизма (экскреты), например мочевину; и в том и в другом случае содержится некоторое количество энергии. Как живот­ные, так и растения теряют часть энергии при дыхании.

Энергию, оставшуюся после потерь из-за дыхания, пище­варения, экскреции, организмы используют для роста, разм­ножения и процессов жизнедеятельности (мышечная работа, поддержание температуры теплокровных животных и пр.). За­траты энергии на терморегуляцию зависят от климатических условий и времени года, особенно велики различия между гомойотермными и пойкилотермными животными. Теплокров­ные, получив преимущество при неблагоприятных и неста­бильных условиях среды, потеряли в продуктивности.

Расход потребленной животными энергии определяется уравнением:
РОСТ + ДЫХАНИЕ (ЖИЗНЕДЕЯТЕЛЬНОСТЬ) + РАЗМНОЖЕНИЕ + + ФЕКАЛИИ + ЭКСКРЕТЫ = ПОТРЕБЛЕННАЯ ПИЩА.
В целом травоядные усваивают пищу почти в два раз менее эффективно, чем хищники. Это объясняется тем, что растения содержат большое количество целлюлозы, а порой и древеси­ны (включающей целлюлозу и лигнин), которые плохо перева­риваются и не могут служить источником энергии для боль­шинства травоядных. Энергия, заключенная в экскрементах и экскретах, передается детритофагам и редуцентам, поэтому для экосистемы в целом она не теряется.

Сельскохозяйственные животные всегда, даже при содер­жании на пастбище на подножном корму, отличаются более высокой продуктивностью, т. е. способностью более эффектив­но использовать потребленный корм для создания продукции. Главная причина состоит в том, что эти животные освобожде­ны от значительной части энергетических расходов, связан­ных с поиском корма, с защитой от врагов, непогоды и т. д.

Первичная продуктивность экосистемы, сооб­щества или любой их части определяется как скорость, с кото­рой энергия Солнца усваивается организмами-продуцентами (в основном зелеными растениями) в ходе фотосинтеза или хи­мического синтеза (хемопродуцентами). Эта энергия матери­ализуется в виде органических веществ тканей продуцентов.

Принято выделять четыре последовательные ступени (или стадии) процесса производства органического вещества:

валовая первичная продуктивность — общая скорость накопления органических веществ продуцентами (скорость фотосинтеза), включая те, что были израсходованы на дыхание и секреторные функции. Растения на процессы жизнедеятельности тратят примерно 20% производимой химической энергии;

чистая первичная продуктивность — скорость накопления органических веществ за вычетом тех, что были израсходованы при дыхании и секреции за изучаемый период. Эта энергия может быть использована организмами следующих трофических уровней.

- чистая продуктивность сообщества – скорость общего накопления органических веществ, оставшихся после потребления гетеротрофами-консументами (чистая первичная продуктивность минус потребление гетеротрофами). Она обычно измеряется за какой-то период; например, вегетационный период роста и развития растений или за год в целом;

- вторичная продуктивность – скорость накопления энергии консументами. Ее не делят на «валовую» и «чистую», так как консументы потребляют лишь ранее созданные (готовые) питательные вещества, расходуя их на дыхание и секреторные нужды, а остальное превращая в собственные ткани.

2.3. Динамика экосистем

Сложные межвидовые взаимоотношения, определяю­щие функциональную целостность экосистем, отличаются от­носительной «свободой» структурных связей между отдельны­ми компонентами. Виды в составе конкретных биоценозов могут замещаться биологически сходными видами. Неста­бильность абиотических факторов экосистем является причи­ной колебаний состава и функциональных связей в биоцено­зах. Динамичность — одно из фундаментальных свойств эко­систем, которое отражает не только зависимость последних от комплекса факторов, но и адаптивную (приспособительную) реакцию всей системы на эти факторы.

Масштабы времени, в которых выражается динамика эко­систем, различны. Изменения могут иметь суточную или се­зонную ритмичность, продолжаться несколько лет или охва­тывать целые геологические эпохи, влияя на развитие гло­бальной экосистемы Земли.
1   2   3

Похожие:

Биоценозы и биогеоценозы (основы синэкологии) icon1. Термин «Биология» ввёл в науку Ж. Б. Ламарк. А да; б нет
Биосистемами являются клетки и организмы, виды и популяции, биогеоценозы и биосфера
Биоценозы и биогеоценозы (основы синэкологии) iconЛекция №10. Общая экология 2
Многообразные живые организмы встречаются на Земле не в любом сочетании, а в процессе совместного существования образуют биологические...
Биоценозы и биогеоценозы (основы синэкологии) iconБиоценозы и экосистемы
Итак, мы переходим к тем темам курса общей экологии, которые однозначно можно причислить к синэкологическим. Поскольку синэкология...
Биоценозы и биогеоценозы (основы синэкологии) iconАнализ способов сохранения биологических объектов
Термин «биологические объекты» трактуется в биологическом словаре как «объекты различной сложности – клетки, ткани, системы органов...
Биоценозы и биогеоценозы (основы синэкологии) iconБиогеоценоз Цель: Создать условия для целостного восприятия понятия «биогеоценоз»
Самые распространенные биогеоценозы Пермского края леса. Площадь лесов занимает 80% территории. Отправимся на экскурсию в лес
Биоценозы и биогеоценозы (основы синэкологии) iconЭкологическое образование на естественно-географическом факультете в Новосибирском государственном педагогическом университете
Сибири и др. На кафедре открыто две аспирантуры, реализуется два направления научных исследований: «Биогеоценозы в режиме антропогенного...
Биоценозы и биогеоценозы (основы синэкологии) iconТеоретико-методические задания для подготовки к школьной Олимпиаде по физической культуре для учащихся 10-11 классов
Теоретического части слагается из блоков: социокультурные основы; психолого-педагогические основы физической культуры; медико-биологические...
Биоценозы и биогеоценозы (основы синэкологии) iconЛингвометодические основы изучения написания буквы "ерь"
I. психолого-педагогические основы формирования орфографического навыка в начальной школе
Биоценозы и биогеоценозы (основы синэкологии) icon5. объекты, находящиеся под особой охраной особо охраняемые природные территории
Оопт. Они позволяют сохранить эталонные и уникаль-ные ландшафты и биогеоценозы и играют важную роль для поддержания биоло-гического...
Биоценозы и биогеоценозы (основы синэкологии) iconВ. Н. Сукачевым (1972) в качестве структурной единицы биосферы предложен биогеоценоз. Биогеоценозы природные образования с четкими границами, состоящие из совокупности живых существ (биоценозов), занимающих определ
Понятие “экосистема” введено английским ботаником А. Тенсли (1935), который обозначил этим термином любую совокупность совместно...
Разместите кнопку на своём сайте:
kk.convdocs.org



База данных защищена авторским правом ©kk.convdocs.org 2012-2019
обратиться к администрации
kk.convdocs.org
Главная страница