Гематологические исследования




НазваниеГематологические исследования
страница100/117
Дата конвертации22.04.2013
Размер14.3 Mb.
ТипДокументы
1   ...   96   97   98   99   100   101   102   103   ...   117
Уровень альдостерона в плазме у новорожденных в норме 1060—5480 пмоль/л (38— 200 нг/дл); у младенцев до 6 мес 500—4450 пмоль/л (18—160 нг/дл); у взрослых 100400 пмоль/л (4—15 нг/дл).

Минералокортикоиды — альдостерон и дезоксикортикостерон образуются в коре над­почечников. Альдостерон — стероидный гормон, синтезируется из холестерина в клетках клубочкового слоя коры надпочечников. Это самый сильнодействующий минералокортико-ид, по своей активности он в 30 раз превосходит дезоксикортикостерон. За сутки в надпо­чечниках синтезируется 0,05—0,23 г альдостерона. Синтез и высвобождение альдостерона в кровь регулирует ангиотензин II. Альдостерон приводит к увеличению содержания натрия в почках, что сопровождается усиленным выделением К+ и Н+. Механизм действия альдосте­рона заключается в активации синтеза фермента — протеинкиназы А, которая влияет на ре­зорбцию Na+ в клетках дистальных канальцев почек. Протеинкиназа А катализирует превра­щение фосфолипидов в апикальной мембране клеток канальцев, благодаря чему ее проница­емость для Na+ и Н2О повышается. В конечном счете результатом этих процессов являются задержка в организме натрия (преобладающая над задержкой воды) и выделение ионов калия и водорода. Концентрация натрия в моче низка, если в кровотоке много альдостерона. Помимо клеток почечных канальцев, альдостерон оказывает действие на выведение натрия с фекалиями и распределение электролитов в организме.

Нормальная секреция альдостерона зависит от многих факторов, включая активность системы ренин—ангиотензин, содержание калия, АКТГ, магния и натрия в крови. У боль­ных альдостеронизмом значительно повышена активность альдостерона в плазме по сравне­нию с нормой.

452

Первичный гиперальдостеронизм (синдром Кона) — довольно редкое заболевание, причи­ной которого чаще всего бывает аденома клеток, синтезирующих альдостерон. Повышенный синтез и секреция этого гормона у больных с синдромом Кона не регулируются, но поскольку функции регулирующих систем сохраняются, высокий уровень альдостерона в крови благодаря увеличению содержания Na+ угнетает активность ренина (его продукцию). Для этого заболева­ния характерны высокая степень задержки натрия в организме (гипернатриемия) и повышенное выделение К+ с мочой, что приводит к гипокалиемии. Мышечная активность снижается; часто бывает гипертензия (из-за задержки Na+). Характерным для данного синдрома является высо­кий уровень альдостерона в плазме и постоянно низкий уровень ренина (вплоть до нуля). Это единственная форма артериальной гипертензии, при которой уровни ренина и альдостерона в крови находятся в обратных соотношениях. Если выявляют такие соотношения в концентраци­ях альдостерона и ренина в плазме, диагноз первичного альдостеронизма можно считать дока­занным. Для уточнения локализации патологического процесса исследуют уровень альдостеро­на в крови, взятой из вен правого и левого надпочечников. Это исследование инвазивное и должно проводиться в тех случаях, когда не удается уточнить локализацию патологического процесса другими методами (ультразвуковое исследование, компьютерная томография).

Вторичный гиперальдостеронизм является следствием нарушений в регуляции системы ренин—ангиотензин—альдостерон. В отличие от синдрома Кона в этом случае повышаются активность ренина и ангиотензина в крови. Вторичный гиперальдостеронизм обычно сопро­вождает заболевания, характеризующиеся образованием отеков и задержкой Na+ (цирроз пе­чени с асцитом, нефротический синдром, сердечная недостаточность). На функционирова­ние системы ренин—ангиотензин—альдостерон влияет как низкий объем внутрисосудистой жидкости и низкий почечный кровоток, так и увеличение объема внесосудистой жидкости (гипоальбуминемия при циррозе печени и нефротическом синдроме является причиной вы­хода воды из сосудов).

При псевдогиперальдостеронизме на фоне высокого уровня альдостерона и ренина в плазме резко снижен уровень натрия (<110 ммоль/л).

Недостаточная продукция альдостерона (гипоальдостеронизм) приводит к снижению уровня натрия и хлоридов в плазме, гиперкалиемии и метаболическому ацидозу. Уровень альдостерона в плазме резко снижен, а активность ренина значительно повышена. Для оцен­ки потенциальных запасов альдостерона в коре надпочечников используют тест стимуляции альдостерона АКТГ. При выраженной недостаточности альдостерона, особенно врожденных дефектах его синтеза, тест отрицательный, т.е. уровень альдостерона после введения АКТГ остается низким.

При исследовании активности альдостерона в крови необходимо учитывать, что выделе­ние альдостерона в кровь подчинено суточному ритму, подобно ритму выделения кортизола. Пик концентрации гормона отмечается в утренние часы, самая низкая концентрация — около полуночи. Концентрация альдостерона увеличивается в лютеиновую фазу овуляторно-го цикла и во время беременности.

Основные заболевания и состояния, при которых может изменяться активность альдос­терона в плазме, представлены в табл. 9.45.

Таблица 9.45. Заболевания и состояния, при которых может изменяться активность альдостерона

в плазме



Снижение активности

Повышение активности

При отсутствии гипертензии:

Синдром Кона (первичный гиперальдостеронизм):

• аддисонова болезнь

• альдостерома

• гипоальдостеронизм

• гиперплазия надпочечников

При гипертензии:

Вторичный гиперальдостеронизм:

• избыточная секреция дезоксикор-

• сердечная недостаточность

тикостерона, кортикостерона

• цирроз печени с асцитом

• синдром Тернера (в 25 % случаев)

• нефротический синдром

• сахарный диабет

• синдром Бартера

• острая алкогольная интоксикация

• послеоперационный период у больных с гиповолемией,




вызванной кровотечением




• злокачественная ренальная гипертензия




• гемангиоперицитома почки, продуцирующая ренин




• транссудаты

453

Атриальный натрийуретический пептид в плазме

Важное значение в регуляции объема натрия и воды отводится атриальному натрийу-ретическому пептиду (АНП). АНП — пептид, состоящий из 28 аминокислотных остатков. Синтезируется и хранится в виде прогормона (126 аминокислотных остатков) в кардиоци-тах правого и левого предсердия и секретируется в виде неактивного димера, который пре­вращается в активный мономер в плазме. Главными факторами, регулирующими секрецию АНП, являются увеличенный объем циркулирующей крови и повышенное центральное ве­нозное давление. Среди других регуляторных факторов необходимо отметить высокое арте­риальное давление, повышенную осмолярность плазмы, учащенное сокращение сердечной мышцы и повышенный уровень катехоламинов в крови. Глюкокортикоиды также увеличи­вают синтез АНП, влияя на ген АНП. Первичной тканью-мишенью для АНП служат почки, но он действует также на периферическое сопротивление артерий. В почках АНП усиливает тонус приводящих артериол, тем самым повышает давление в клубочке, т.е. уве­личивает фильтрационное давление. АНП способен сам по себе усиливать фильтрацию, даже если внутриклубочковое давление не меняется. Это приводит к увеличению экскре­ции натрия (натрийурез) вместе с большим количеством первичной мочи. Увеличение экс­креции натрия дополнительно обусловлено подавлением АНП секреции ренина юкстагло-мерулярным аппаратом. Ингибирование ренин—ангиотензин—альдостероновой системы способствует усиленной экскреции натрия и периферической вазодилатации. Дополни­тельно экскреция натрия усиливается путем прямого действия АНП на проксимальные ка­нальцы нефрона и непрямого ингибирования синтеза и секреции альдостерона. Наконец, АНП ингибирует секрецию АДГ из задней доли гипофиза. Все эти механизмы в конечном счете направлены на то, чтобы вернуть к норме увеличенное количество натрия и увели­ченный объем воды в организме, возникшие в результате каких-то патологических воздей­ствий. Факторы, активирующие АНП, противоположны тем, которые стимулируют образо­вание ангиотензина II.

Механизм действия АНП уникален с различных точек зрения. На плазматической мембране клеток-мишеней имеется рецептор к АНП. Мембранный рецептор является бел­ком, встроенным в мембрану клетки и обладающим внутренней гуанилатциклазной актив­ностью. Его связывающий участок находится в экстрацеллюлярном пространстве. Внутри­клеточный участок АНП-рецептора сильно фосфорилирован в неактивной форме. Как только АНП присоединяется к экстрацеллюлярному участку рецептора, происходит акти­вация гуанилатциклазы, которая катализирует образование цГМФ из гуанилаттрифосфата. В гломерулезных клетках надпочечников цГМФ ингибирует синтез альдостерона прямо и опосредованно через ингибирование образования цАМФ. Кроме этого, цГМФ ингибирует саму секрецию альдостерона в кровь. В клетках-мишенях почек и сосудов активация цГМФ ведет к фосфорилированию внутриклеточных белков, которые осуществляют биоло­гический эффект АНП в этих тканях (механизм этого действия окончательно еще не уста­новлен).

В плазме крови АНП находится в виде нескольких форм прогормона. Существующие диагностические системы основаны на способности определять концентрацию С-концевого пептида про-АНП с 99—126 аминокислотными остатками (а-АНП) или двух форм с N-koh-цевым пептидом — про-АНП с 31—67 аминокислотными остатками и про-АНП с 78— 98 аминокислотными остатками [Hunter M.E.F. et al., 1998]. Нормальные величины концент­рации в плазме крови составляют: для а-АНП — 8,5±1,1 пмоль/л; для N-про-АНП с 31 — 67 аминокислотными остатками — 143,0±16,0 пмоль/л; для N-про-АНП с 78—98 аминокис­лотными остатками — 587±83 пмоль/л [Hunter M.E.F. et al., 1991]. Считается, что про-АНП с N-концевым пептидом более устойчив в крови, поэтому его исследование предпочтительно для клинических целей. Высокая концентрация АНП может играть роль в уменьшении за­держки натрия почками. АНП оказывает влияние на симпатическую и парасимпатическую системы, почечные канальцы и сосудистую стенку.

В последних научных исследованиях АНП все чаще рассматривается как потенциаль­ный маркер оценки функционального состояния сократительного потенциала сердечной мышцы. Уровень АНП в плазме у пациентов с застойной сердечной недостаточностью обыч­но повышен. Однако ответ на повышенный выброс АНП при сердечной недостаточности ослабевает. Концентрация АНП в плазме повышается у пациентов с недостаточностью митрального клапана, остановкой сердца, прогрессирующим ухудшением гемодинамики [Clerico A. et al., 1998]. У беременных с преэклампсией концентрация про-АНП с N-конце­вым пептидом в крови может повышаться до 2000 пмоль/л.

454

Эндотелии в плазме

Эндотелии — один из наиболее сильных вазоконстрикторов, относящихся к группе ци-токинов. Норадреналин, АДГ и интерлейкин-1 стимулируют его высвобождение из эндоте-лиальных клеток, а эндотелии в свою очередь увеличивает уровень АНП, АДГ и альдостеро-на в плазме. В норме содержание эндотелина составляет 7,2±4,0 пг/мл [Wijdicks E.F. et al., 1997]. Содержание эндотелина в плазме у пациентов с застойной сердечной недостаточнос­тью повышено, но не коррелирует с системным сосудистым сопротивлением или сердечным выбросом. В настоящее время участие эндотелина в поддержании ОЦК и водного гомеостаза активно изучается.

ФУНКЦИОНАЛЬНОЕ СОСТОЯНИЕ ЭПИФИЗА

Эпифиз (шишковидная железа) является неотделимой частью центральной системы нейрогуморальной регуляции организма, его называют нейроэндокринным передатчиком. Функции эпифиза в настоящее время мало изучены. Однако известно, что эпифизу принад­лежит ведущая роль в передаче информации на все жизнеобеспечивающие системы организ­ма о смене дня и ночи, а также в организации сезонных и циркадных ритмов и регуляции репродуктивных функций. Контакты между гипоталамусом и эпифизом, видимо, осущест­вляются гуморальным путем. Инкреты эпифиза (мелатонин и серотонин) оказывают инги-бирующее влияние на выработку рилизинг-гормонов в крупноклеточных ядрах гипоталаму­са. Эпифиз путем выработки мелатонина подавляет секрецию Л Г, а серотинин — ФСГ, бло­кируя образование соответствующих рилизинг-гормонов [Arendt J., 1995].

Нарушение гормональных функций эпифиза проявляется гипопинеализмом, гиперпи-неализмом и диспинеализмом.

Для оценки функционального состояния эпифиза в настоящее время необходимо опре­деление мелатонина и серотонина в крови и продуктов метаболизма мелатонина (мелатони­на сульфата) в моче.

Мелатонин в сыворотке

Содержание мелатонина в сыворотке утром в норме 20 нг/мл, вечером 55 нг/мл.; в слюне — 30 % от его уровня в сыворотке.

Мелатонин, или ^-ацетил-5-метокси-триптамин — главный гормон эпифиза. Он син­тезируется в эпифизе из промежуточного метаболита серотонина — N-ацетилсеротонина. Мелатонин секретируется в кровь эпифизом. Уровень мелатонина в крови имеет значитель­ные индивидуальные колебания, самый высокий уровень в крови ночью. Его характерный ночной пик кодирует информацию о времени суток и продолжительности ночи. Регуляция секреции мелатонина находится под контролем главным образом симпатической нервной системы, которая оказывает свое регулирующее влияние посредством норадреналина. Участ­ки, обладающие высокой связывающей способностью и сродством по отношению к мелато-нину, имеются в гипоталамусе человека. Период полураспада мелатонина составляет 47 мин. Большая часть мелатонина метаболизируется в печени до 6-гидроксимелатонина. В виде 6-сульфоксимелатонина (мелатонина сульфат) он выделяется с мочой. Мелатонин является антагонистом меланоцитстимулирующего гормона гипофиза в отношении меланофоров — клеток, обусловливающих пигментацию кожного покрова.

В настоящее время физиологическая и патофизиологическая роль мелатонина активно изучается. Нарушение уровня мелатонина в крови соответствует расстройствам сна, депрес­сии, шизофрении, гипоталамической аменорее и некоторым видам злокачественных новооб­разований.

Преждевременное половое созревание может быть обусловлено наличием опухоли в эпифизе. Если опухоль развивается из энзимоактивных элементов паренхимы, то преоблада­ют явления гиперпинеализма или диспинеализма. Недостаточность секреции мелатонина эпифизом приводит к повышенной выработке ФСГ и, следовательно, к персистенции фол­ликула, поликистозу яичников, общей гиперэстрогении. На этом фоне могут развиваться: фиброматоз матки, дисфункциональные маточные кровотечения. Гиперфункция эпифиза, наоборот, индуцирует гипоэстрогению, половую фригидность.

Мелатонину отводится важная роль в патогенезе ановуляторных маточных кровоте­чений. Таким больным показано исследование экскреции мелатонина с мочой на про-

455

тяжении всего менструального цикла. В норме на протяжении фолликулиновой фазы цикла показатели экскреции составляют 5—9 мкг/сут, в фазу овуляции экскреция мела-тонина снижается до 5,3±0,4 мкг/сут, а в лютеиновой фазе количество экскретируемого мелатонина увеличивается. У больных с дисфункциональными маточными кровотечения­ми экскреция мелатонина с мочой возрастает до 11,8±2,8 мкг/сут [Серов В.Н. и др., 1995].

Повышение уровня мелатонина в крови и его экскреции с мочой наблюдается у боль­ных с маниакальными состояниями.

Снижение уровня мелатонина в крови характерно для больных пеллагрой, нарушениями обмена триптофана.

ФУНКЦИОНАЛЬНОЕ СОСТОЯНИЕ

ГОРМОНАЛЬНЫХ СИСТЕМ РЕГУЛЯЦИИ

ОБМЕНА КАЛЬЦИЯ

Основная масса имеющегося в организме кальция находится в костях. Длительная недо­статочность кальция вызывает заболевания костной ткани. Фракция внекостного кальция составляет всего 1 % от его общего содержания в организме, вместе с тем она очень важна из-за ее воздействия на нервно-мышечную возбудимость и сердечную мышцу. Гомеостаз кальция в организме обеспечивается системой паратиреоидный гормон (ПТГ) — кальцито-нин — витамин D. Основная функция всех этих гормонов — регуляция движения Са2+ и фос­фатов в организме и поддержание постоянства концентрации Са2+ в крови.

Нарушения метаболизма кальция проявляются гиперкальциемией или гипокальци-емией, отрицательным или положительным балансом кальция. Среди нарушений обмена кальция различают заболевания, при которых концентрация ПТГ повышена (секреция ПТГ либо неадекватна и вызывает повышение уровня кальция в крови, либо адекватна и сочета­ется с соответствующим нижней границе нормы или низким уровнем кальция в плазме) или понижена (заболевания паращитовидных желез, сопровождающиеся снижением концентра­ции кальция в крови, а также случаи адекватного угнетения секреции ПТГ под влиянием вы­соких концентраций кальция в крови, не обусловленных аномальными концентрациями ПТГ). В более упрощенной форме наиболее частой причиной гиперкальциемии является ги-перпаратиреоз, а гипокальциемии — гипопаратиреоз.

Лабораторная диагностика нарушений обмена кальция основывается на проведении следу­ющих групп тестов:

  1. исследование содержания общего и ионизированного кальция, неорганических фос­
    фатов в крови и экскреции их с мочой. Исследование необходимо проводить повтор­
    но на свободной диете и на диете с содержанием кальция 10 мг/кг массы тела паци­
    ента и фосфора 0,9—1,5 г;

  2. исследование содержания в крови магния, натрия, калия, альбумина, КОС, т.е. пара­
    метров, влияющих на содержание общего и ионизированного кальция в крови или
    характеризующих его метаболизм;

  3. определение в крови концентрации гормонов, регулирующих гомеостаз кальция
    (ПТГ, КТ, кальцитриол);

  4. исследование биохимических маркеров метаболизма и резорбции костной ткани (ще­
    лочная фосфатаза, остеокальцин, гидроксипролин, дезоксипиридинолин);

  1. проведение функциональных тестов.

Первые две группы тестов рассмотрены в предыдущих главах книги. В этой главе будут рассмотрены третья и четвертая группы тестов.

Гормоны, регулирующие гомеостаз кальция Параттормон (ПТГ) в сыворотке

Уровень ПТГ в сыворотке у взрослых в норме 8—24 нг/л (РИА N-концевой ПТГ).

ПТГ — полипептид, состоящий из 84 аминокислотных остатков, является продуктом жизнедеятельности паращитовидных желез, где он синтезируется в виде высокомолекуляр­ного прогормона. Прогормон после выхода из клеток подвергается протеолизу с образовани-

456

ем ПТГ. Продуцирование, секрецию и гидролитическое расщепление ПТГ регулирует кон­центрация Са2+ в крови. Снижение ее приводит к стимуляции синтеза и высвобождению гормона, а понижение вызывает обратный эффект. ПТГ повышает концентрацию Са2+ и фосфатов в крови. ПТГ действует на остеобласты в плане повышения деминерализации кос­тей. Активен не только сам гормон, но и его аминоконцевой пептид. Он возникает при гид­ролизе ПТГ в гепатоцитах и почках в тем большем количестве, чем ниже концентрация Са2+ в крови. В остеокластах активируются ферменты, разрушающие промежуточное вещество кости, а в клетках проксимальных канальцев почек ингибируется обратная реабсорбция фос­фатов. В кишечнике усиливается всасывание кальция.

В патогенезе гиперпаратиреоза ведущую роль играют нарушения кальций-фосфорного обмена вследствие избыточной продукции ПТГ. Органами-мишенями ПТГ являются кости, почки и тонкая кишка. При действии ПТГ на костную ткань усиливается резорбция кости за счет активации остеобластов. Образование новой кости отстает от ее рассасыва­ния, что ведет к генерализованному остеопорозу, вымыванию кальция из костного депо и гиперкальциемии. Остеобласты активируют синтез коллагена. Разрушение избыточного количества коллагена нейтральными протеазами приводит к появлению высоких концент­раций пептидов, содержащих оксипролин в крови, и повышает их выведение с мочой. Вли­яние ПТГ на почки проявляется фосфатурией, обусловленной снижением реабсорбции фосфата в проксимальных канальцах. ПТГ стимулирует образование кальцитриола, кото­рый усиливает всасывание кальция в тонкой кишке. Важную роль в возникновении язвен­ного поражения желудка, двенадцатиперстной кишки и тонкой кишки играет гиперкаль-циемия, которая вызывает кальцификацию сосудов, и прямое действие ПТГ на слизистую оболочку желудочно-кишечного тракта.

Первичный гиперпаратиреоз может быть обусловлен либо аденомой (аденомами, блас-томой) паращитовидных желез (в 85 % случаев), либо их первичной гиперплазией [Му-сил Я., 1986]. Опухоли паращитовидных желез почти всегда доброкачественны. Лишь в редких случаях первичный гиперпаратиреоз вызван карциномой паращитовидных желез. С возрастом частота случаев аденомы паращитовидных желез увеличивается. Первичный гиперпаратиреоз характеризуется повышением ПТГ (в 2—20 раз), гиперкальциемией при нормальном или сниженном уровне фосфатов в крови. Если развивается поражение почек, обычно вследствие гиперкальциемии, то уровни фосфатов и кальция имеют тенденцию к нормализации: фосфаты из-за неспособности почек отвечать на фосфатурическое воздей­ствие ПТГ, а кальций из-за понижения его концентрации в крови при заболеваниях почек. На этой стадии заболевания диагностика может быть очень затруднена. Содержание каль-цитонина в крови повышено.

Вторичный гиперпаратиреоз представляет собой компенсаторную гиперфункцию и ги­перплазию паращитовидных желез, развивающуюся при длительной гиперфосфатемии и ги-покальциемии, обусловленной хронической почечной недостаточностью, дефицитом вита­мина D и кальция, синдромом мальабсорбции. При вторичном гиперпаратиреозе происхо­дит стимуляция продуцирования ПТГ в паращитовидных железах в ответ на снижение кон­центрации ионизированного кальция в крови. Эта секреция ПТГ является адекватной в том смысле, что она необходима для нормализации содержания ионизированного кальция. Если этот эффект достигнут, то стимуляция секреции ПТГ прекращается. В связи с этим если функции механизма обратной связи регуляции ПТГ не нарушены, то любой фактор, способ­ствующий снижению ионизированного кальция в крови, может вызывать вторичный гипер­паратиреоз. При вторичном гиперпаратиреозе концентрация кальция в крови либо низкая (если повышенное продуцирование ПТГ оказывается неадекватным для коррекции гипо-кальциемии), либо находится в пределах нормы, но никогда не бывает повышенной. Кон­центрация кальцитонина в крови снижена.

Гиперпаратиреоз при эктопической секреции ПТГ (псевдогиперпаратиреоз) возникает в тех случаях, когда злокачественные опухоли неэндокринных тканей продуцируют чуждые им пептиды, одним из которых может быть ПТГ. Наиболее часто эктопическая секреция ПТГ встречается при раке почки и бронхогенном раке.

Множественный эндокринный адематоз I и II типов (множественные эндокринные нео-плазии) относятся к редко встречающейся патологии. Они характеризуются тем, что две эн­докринные железы или более секретируют обычно из аденом неадекватное количество гор­монов. Различают несколько групп множественных эндокринных неоплазий (МЭН). При МЭН I в патологический процесс могут быть вовлечены (две или более) следующие эндо­кринные ткани: паращитовидные железы (гиперплазия или аденома), клетки островков под­желудочной железы (гастриномы, инсулиномы), передняя доля гипофиза, кора надпочечни-

457

ков, щитовидная железа. МЭН II включает медуллярную карциному щитовидной железы, феохромоцитому, аденому или карциному паращитовидных желез (более подробно о МЭН см. «Инкреторная функция желудочно-кишечного тракта»).

Содержание ПТГ в крови может повышаться при D-гиповитаминозе, при энтерогенной тетании и тетании беременных. У большинства больных с метастазами в кости определяют гиперкальциемию и повышенное содержание ПТГ в крови.

Гипопаратиреоз — недостаточность функции паращитовидных желез, характеризующая­ся сниженной продукцией ПТГ, что способствует нарушению обмена кальция и фосфора. Недостаток ПТГ приводит к повышению уровня фосфора в крови (за счет снижения почеч­ного эффекта ПТГ), а также к гипокальциемии, обусловленной снижением всасывания каль­ция в кишечнике, уменьшением его мобилизации из костей и недостаточной реабсорбцией кальция в почечных канальцах. Кальцитонин в крови снижен. В патогенезе гипокальциемии имеет значение уменьшение синтеза в почках кальцитриола. Наиболее часто гипотиреоз обу­словлен хирургическим повреждением либо непосредственно паращитовидных желез, либо их кровоснабжения при частичной тиреоидэктомии (во время тотальной тиреоидэктомии и ларингэктомии обычно удаляют паращитовидные железы). Вместе с тем необходимо по­мнить, что отмечаемая после тиреоидэктомии гипокальциемия часто обусловлена не по­вреждением паращитовидных желез, а послеоперационной гипоальбуминемией (поэтому лучше исследовать ионизированный кальций) и быстрым поступлением кальция в обеднен­ную им костную ткань. Ранние признаки послеоперационной недостаточности паращито­видных желез могут быть преходящими, но если низкая концентрация кальция не нормали­зуется несколько недель, необходимо лечение. Выявляемое при исследованиях снижение ПТГ в крови может сопровождаться повышением концентрации кальция. Причинами гипер-кальциемии при сниженной концентрации ПТГ являются избыток витамина D, идиопати-ческая гиперкальциемия у детей, саркоидоз, очень тяжелый тиреотоксикоз, некоторые слу­чаи миеломы.

Псевдогипопаратиреоз — синдром Олбрайта, наследственная остеодистрофия — отно­сится к редкому врожденному патологическому состоянию, при котором нарушен ответ на воздействие ПТГ как почек, так и костной ткани. Заболевание обусловлено наследствен­ным дефектом рецепторов тканей-мишеней к действию ПТГ. Ни эндогенный, ни экзоген­ный ПТГ не повышают уровня кальция в сыворотке крови и не снижают концентрацию фосфора. В большинстве случаев псевдогипопаратиреоза введение таким больным ПТГ со­провождается неадекватным увеличением концентрации цАМФ в крови и моче. При псев-догипопаратиреозе I типа ПТГ не способен активировать аденилатциклазную систему, в результате чего не образуется цАМФ, главной задачей которого является реализация эф­фекта ПТГ в клетке. В основе дефекта лежит сниженная активность белка, связывающего гуаниновый нуклеотид (фрагмент G). При псевдогипопаратиреозе II типа ПТГ нормально активирует внутриклеточный цАМФ, экскреция которого с мочой повышена как в базаль-ном состоянии, так и после стимуляции. Полагают, что в этом случае дефект состоит в не­способности клеток-мишеней отвечать на сигнал внутриклеточного цАМФ. У некоторых больных псевдогипопаратиреозом резистентность к ПТГ ограничена почками, тогда как кости нормально реагируют на повышение уровня гормона. Этот вариант заболевания иногда называют псевдогипогиперпаратиреозом. В большинстве случаев псевдогипопара­тиреоза введение таким больным ПТГ сопровождается неадекватным увеличением кон­центрации цАМФ в крови и моче.

Кальцитриол [1,25(OH)2D3] в сыворотке

Уровень кальцитриола в сыворотке у взрослых в норме 25—45 пг/мл (60—108 пмоль/л).

Витамин D3 (холекальциферол) образуется в коже из 7-дегидрохолестерола под влия­нием солнечного света или поступает в организм с пищей. Синтезированный и поступив­ший витамин D3 транспортируется кровью в печень, где в митохондриях превращается в 25-гидроксивитамин {25(OH)D3}. Этот промежуточный продукт превращается или в 25(OH)2D3 или в 24,25(OH)2D3. Кальцитриол 1,25(OH)2D3 образуется в митохондриях кле­ток почек под действием 1-гидроксилазы и наиболее активная форма витамина D3. По своему действию 1,25(OH)2D3 является гормоном и прямым антирахитическим фактором, его механизм действия подобен стероидным гормонам [Долгов В. и др., 1995]. После син­теза в почках он транспортируется кровью в кишечник, где в клетках слизистой оболочки стимулирует синтез кальцийсвязывающего протеина, который способен связывать каль-

458

ций, поступающий с пищей (в этом и состоит основная функция витамина D). В резуль­тате этих процессов уровень кальция в крови повышается. Продуцирование и секреция 1,25(OH)2D3 регулируются. На его секрецию почками влияет содержание кальция и фос­фора в пище. Сам он также действует как регулятор: его избыток ингибирует синтез и сек­рецию паратгормона. Избыток ионов кальция в крови, вызванный избытком 1,25(OH)2D3, также ингибирует высвобождение паратгормона. Пролактин и соматотропный гормоны являются важными регуляторами метаболизма витамина D во время беременности и роста.

Недостаток 1,25(OH)2D3 приводит к гипокальциемии, остеомаляции и связанным с этим нарушениям. Низкие значения 1,25(OH)2D3 в крови выявляют при рахите, остеопорозе после наступления менопаузы, остеомаляции, гипофункции паращитовидных желез, у под­ростков при инсулинзависимом сахарном диабете, отравлении витамином D, первичной опухоли или метастазах в кости, ХПН; и совсем не определяется его концентрация после нефрэктомии.

Повышенные значения 1,25(OH)2D3 в крови определяют при первичном гиперпарати-реозе, саркоидозе, туберкулезе, кальцинозе, у нормально растущих детей, беременных и кор­мящих матерей.

Маркеры метаболизма и резорбции костной ткани

Маркерами метаболизма костной ткани (маркерами формирования костной ткани) яв­ляются костный изофермент щелочной фосфатазы, остеокальцин, N- и С-концевые про-пептиды коллагена I типа. Костный изофермент щелочной фосфатазы ассоциируется с ак­тивностью остеобластов. Остеокальцин — основной неколлагеновый белок костного мат­рикса, который синтезируется почти исключительно остеобластами и затем участвует в процессах минерализации. N- и С-концевые пропептиды коллагена I типа циркулируют в крови в виде отдельных цепей. Однако выраженная физиологическая вариабельность огра­ничивает возможность исследования метаболитов коллагена как в диагностике, так и мо­ниторинге заболеваний с нарушением обмена кальция, тем более что костный изофермент щелочной фосфатазы и остеокальцин обладают большей диагностической чувствитель­ностью.

Основными биохимическими показателями, используемыми в клинической практике в качестве критерия резорбции костной ткани, служат гидроксипролин мочи и пиридиновые связи коллагена. Гидроксипролин мочи отражает разрушение (резорбцию) костной ткани. Однако поскольку гидроксипролин присутствует также в коже и других тканях, его опреде­ление относительно неспецифично для оценки резорбции костной ткани. Стабильность кол-лагенового матрикса обеспечивается межмолекулярными необратимыми связями, образую­щимися между некоторыми аминокислотами, входящими в полипептидную цепь коллагена. Из-за наличия пиридинового кольца перекрестные связи называют пиридинолином (Пид) и дезоксипиридинолином (Дпид). Пиридиновые связи присутствуют только во внеклеточных коллагеновых фибриллах и характерны для дифференцированного матрикса прочных типов соединительной ткани — кости, хряща, дентина. Их не находят в коллагене кожи, мягких тканях, поэтому их исследование более специфично для оценки резорбции костной ткани [Takeuchi S. et al., 1996].

Остеокальцин в сыворотке

Остеокальцин — витамин К-зависимый неколлагеновый белок костной ткани — лока­лизуется преимущественно во внеклеточном матриксе кости и составляет 25 % неколлагено-вого матрикса. Остеокальцин синтезируется зрелыми остеобластами и является индикатором метаболизма костной ткани. Высокий уровень ПТГ в крови оказывает ингибирующее дейст­вие на активность остеобластов, продуцирующих остеокальцин, и снижает его содержание в костной ткани и крови. 1,25(OH)2D3 стимулирует синтез остеокальцина в остеобластах и по­вышает его уровень в крови. Остеокальцин — чувствительный маркер метаболизма костной ткани, причем изменения его концентрации в крови отражают метаболическую активность остеобластов костной ткани. Содержание остеокальцина в крови в норме представлено в табл. 9.46.

459

■&й л wл!,* *) Afe.

оследжэдплцшъ » шпоротке * норме



Возраст

Остеокальцин, нг/мл

Дети Женщины Мужчины

39,1-90,3 10,7-32,3 14,9-35,3

Рахит у детей раннего возраста сопровождается снижением в крови содержания остео­кальцина, степень снижения его концентрации зависит от выраженности рахитического процесса и наиболее выражена при рахите II степени. Содержание остеокальцина в крови детей, больных рахитом, находится в обратной зависимости от концентрации ПТГ и в пря­мой — с уровнем общего и ионизированного кальция и кальцитонина.

Уровень остеокальцина в крови повышается при болезнях, характеризующихся увеличе­нием костного обмена: болезнь Педжета, первичный гиперпаратиреоз, почечная остеодис-трофия, диффузный токсический зоб [Рожинская Л.Я. и др., 1991].

У больных гиперкортицизмом (болезнь и синдром Иценко—Кушинга) и пациентов, по­лучающих преднизолон, значительно снижено содержание остеокальцина в крови, т.е. име­ется тесная зависимость между выраженностью гиперкортицизма и снижением костеобразо-вания, отражением которого является содержание остеокальцина в крови. Успешное лечение этих категорий больных сопровождается повышением концентрации остеокальцина в крови. Уровень остеокальцина у больных гипопаратиреозом низкий.

Общий гидроксипролин в моче

Коллаген — фиброзный протеин. Он обнаружен в костях, сухожилиях, коже, кровенос­ных сосудах и хрусталике глаза. Коллаген состоит на 33 % из глицина и на 21 % из белка и гид­роксипролина. Гидроксипролин составляет около 10 % молекулы коллагена. Различные про­изводные гидроксипролина представляют собой метаболиты коллагена, отражающие в опреде­ленной степени процессы фиброгенеза. Определение его выведения с мочой является ценным показателем общего обмена коллагена. У здоровых людей ббльшая часть общего гидроксипро­лина выделяется с мочой в виде пептидных комплексов и менее 10 % — в свободном виде. Со­держание общего гидроксипролина в моче в норме представлено в табл. 9.47.

Таблица 9.47. Содержание общего гидроксипролина в моче в норме

[Тиц Н., 1997]



Возраст

Общий гидроксипролин

мг/сут

ммоль/сут

1—5 лет

20-65

0,15-0,49

6-10»

35-99

0,27-0,75

11-14»

63-180

0,48-1,37

18-21 год

20-55

0,15-0,42

22—40 лет

15-42

0,11-0,32

41-55»

15-43

0,11-0,33

Экскреция гидроксипролина при врожденном нарушении метаболизма и различных не­специфических аминоацидуриях, обусловленных дистрофией костной ткани, избыточна. Оп­ределение оксипролина необходимо для контроля за лечением больных с деструктивными процессами костной ткани (в частности, болезнью Педжета). Повышенное его выделение с мочой наблюдается при акромегалии, гипертиреозе, гиперпаратиреозе (не всегда), болезни Педжета, рахите и остеомаляции, обширных переломах, опухолях костей, остеопорозе, сарко-идозе, тяжелых ожогах, остром остеомиелите, растущих шпорах. Сниженные концентрации гидроксипролина характерны для гипопитуитаризма, гипотиреоза, гипопаратиреоза, недоста­точности питания, мышечной дистрофии.

В течение 3 дней перед сбором суточной мочи на исследование общего гидрокси-проли-на пациент должен соблюдать безколлагеновую диету.

460

Пиридинолин (Пид) и дезоксипиридинолин (Дпид) в моче

Пиридиновые перекрестные связи — специфические компоненты зрелого коллагена. Костная ткань является основным источником Пид биологических жидкостей организма. Этот тип связи представлен также в хрящевой ткани, сухожилиях. Однако активный метабо­лизм костной ткани по сравнению с другими типами соединительной ткани позволяет счи­тать, что определяемый в моче Пид обеспечивается в основном за счет деструктивных про­цессов физиологического или патологического характера в костях. Содержание Пид и Дпид в моче в норме представлено в табл. 9.48.

Таблица 9.48. Содержание Пид и Дпид в моче в норме [Тиц Н., 1997]



Возраст

Пиридинолин, нмоль/ммоль

Дезоксипиридинолин, нмоль/ммоль

креатин и на

креатин и на

2—10 лет

160-440

31-110

11-14»

105-400

17-100

15-17»

42-200

<59

Взрослые: мужчины

20-61

4-19

женщины

22-89

4-21
1   ...   96   97   98   99   100   101   102   103   ...   117

Похожие:

Гематологические исследования iconМетодические рекомендации гематологические анализаторы. Интерпретация анализа крови
Анализ результатов исследования крови составляет неотъемлемое звено в диагностическом процессе и последующем мониторинге на фоне...

Гематологические исследования iconГематологические исследования
Меньшее количество сосчитанных квадратов не допускается, так как расположение клеток в квадратах камеры неравномерное. Не соблюдение...

Гематологические исследования iconГематологические показатели симментальских и голштин Х симментальских бычков кастратов
Гематологические показатели симментальских и голштин Х симментальских бычков – кастратов

Гематологические исследования iconК Положению о возмещении расходов на оплату
Гематологические заболевания, гемобластозы, цитопения, наследственные гемопатии (гемолитические анемии, геморрагические диатезы,...

Гематологические исследования iconТема исследования
Цель исследования это научный результат, который должен быть получен в итоге исследования

Гематологические исследования iconМетодические рекомендации для практических занятий Тема: Овладение методами исследования физических факторов производст-венной среды, их гигиеническая оценка и влияние на организм.
Методы исследования механических колебаний (шум, вибрация, уз, из). Методы исследования и гигиеническая оценка метеорологических...

Гематологические исследования iconТематический план практических занятий для студентов очного отделения 3 курса педиатрического факультета
Повторение современных методов исследования больных с заболеваниями легких. Анамнез. Физикальные методы исследования, рентгенография,...

Гематологические исследования iconЛекция 1 Тема: «Методы исследования при заболеваниях желудочно-кишечного тракта: расспрос, осмотр, пальпация»
Цель: знать особенности исследования органов пищеварения, значение физикальных методов исследования для диагностики болезней органов...

Гематологические исследования iconИсследования
Объект исследования – монастыри в Западной Европе (V-XVI вв.) и на Руси (X-XVII вв.)

Гематологические исследования iconИсследования
Оборудование и материалы цкп «spf-виварий» необходимые для проведения исследования

Разместите кнопку на своём сайте:
kk.convdocs.org



База данных защищена авторским правом ©kk.convdocs.org 2012
обратиться к администрации
kk.convdocs.org
Главная страница