Ф со пгу 18. 2/06 Қазақстан Республикасының Ғылым және Білім министрлігі




Скачать 249.48 Kb.
НазваниеФ со пгу 18. 2/06 Қазақстан Республикасының Ғылым және Білім министрлігі
страница1/2
Дата конвертации21.12.2012
Размер249.48 Kb.
ТипДокументы
  1   2






Ф СО ПГУ 7.18.2/06


Қазақстан Республикасының Ғылым және Білім министрлігі
С.Торайғыров атындағы Павлодар мемлекеттік университеті
Информатика және ақпараттық жүйелер кафедрасы

050601 Математика мамандығына арналған

математикалық физика есептерін шешудің сандық әдістері пәні бойынша

ДӘРІСТЕРДІҢ ТІРЕК КОНСПЕКТІСІ

Павлодар


Әдістемелік нұсқауларды

бекіту беті



Форма

Ф СО ПГУ 7.18.1/07




БЕКІТЕМІН

ФМжАТ факультет деканы

___________ Тлеукенов С.К.

____ ______ 2008 ж.


Құрастырушы: аға оқытушы Джарасова Г.С.

оқытушы Токжигитова Н.К.
Информатика және ақпараттық жүйелер кафедрасы

050601 Математика мамандығының студенттеріне арналған математикалық физика есептерін шешудің сандық әдістері пәнінен
дәрістердің тірек конспектісі


Кафедра отырысында ұсынылған «__»___________2008ж. №_____ хаттама

Кафедра меңгерушісі _____________________________Ж.К.Нұрбекова

ФМжАТ факультеттің әдістемелік кеңесінде құпталған
«___»___________200__ж. №______ хаттама

ӘК төрайымы __________________ Даутова А.З.

Тақырып 1. Математикалық физиканың негізгі есептері
Айырымдылық теңдеулері. Торлық функциялар кеңістігі. Айырымдылық операторлары. Лаплас операторының айырымдылық аппроксимациясы.Лаплас айырымдылық операторының меншікті мәндерін табуға қойылған есептері. Грин айырымдылық формуласы.Айырымдылық операторларының қасиеттері. Априорлық бағалары. Алғашқы және шекаралық дифференциалдық есептерін айырымдылық схемалармен аппроксимациялау. Шаблон. Аппроксимация реті. Орнықтылық туралы түсінік. Нормаланған кеңістікті аппроксимациялау. Ішкі және сыртқы аппоксимациялары. Байланыссыздық. Аппроксимация қателігі. Орнықтылық. Жинақтылық.

Қарапайым дифференциалдық теңдеудің шешімі бір айнымалыға және т.с.с. тәуелді болады. Көптеген тәжірибелік есептердің шешімі-ізделінетін функциялар бірнеше айнымалы және берілген мәліметтерге тәуелді теңдеулерге, ізделінетін функция есептері дербес туынды болады.Олар дербес туынды теңдеулер деп аталады.

Математикалық қойылымдар дифференциалдық теңдеулермен бірге кейбір қосымша шарттардан құралады. Егер шешім шектелген облыста ізделінсе, онда оның шекаралық шарттары беріледі,олар шекаралық (шектік) деп аталады. Осындай есептер шектік есептер деген атауға ие және дербес туынды теңдеулерге арналған.

Алғашқы шарттарды қанағаттандыратын мәндері берілген есеп дербес туынды теңдеулер жүйесі үшін Коши есебі (КЕ) деп аталады.Сол себепті есеп шығару барысында шексіз кеңістікте шығарылады және шекаралық шарттар берілмейді. Алғашқы және шекаралық шарттар қойылатын есептер стационарлық емес (аралас) шектік есептер деп аталады. Алынатын шешімдер уақыт өтуімен өзгереді.

Дұрыс қойылған есеп алғашқы және шекаралық шарттарын қанағаттандыратын шешімдері бар, сонымен қатар сол теңдеулердің шарттарының коэффициенттерінен үзіліссіз тәуелді болатын есептерді атайды.

Қарастырылып отырған облыстың түрлі сеткеларының енгізілуіне негізделген есептеу әдістерінің ішіндегі түрлі әдістерді қарастырайық. Барлық туынды, алғашқы және шекаралық шарттар байлам сеткаларының функция мәндері арқылы беріледі,соның нәтижесінде түрлі схема деп аталатын сызықтық теңдеулер жүйесі шығады. Сетканың қарастырылып жатқан облысқа енгізілуіне негізделген дербес туынды теңдеулер шешуіне байланысты түрлі сеткалар құрастырылады. Сеткалар байламдары есептелетін нүктелер болып табылады.




axb xi=a+ih1 (I=0,1,…,)
cyd yj=c+jh2 (j=0,1,…,J)
Түрлі сеткаларды құрастыру үшін дербес туынды теңдеулер кейбір шаблондардың шектік түрлі қатынастарымен алмастырылады.Сонда ізделініп жатқан функцияның нақты мәндері U торлы функциясының мәндерімен u түрлі байлам сеткаларында алмастырылады.


сол айырымдылық

орталық айырымдылық

оң айырымдылық

Айырымдылық схемасы алғашқы және шекаралық шарттар жылу өткішгіштік теңдеулерін шешу үшін келесі түрде беріледі:


φ(x))-t = 0 болғандағы U-ді бастапқы температураның бөлінуі


Кез-келген мезетте қарастырылып жатқан [0,1] кесіндісінің аяғында ψ1(t) және ψ2(t) - температураларының бөлінуі алғашқы және шекаралық шарттарымен келісілген, яғни болуы керек. Тік бұрышты торды енгізейік : мұндағы һ,τ-қадамдар.-сетканың байламдарындағы функцияның мәндері.Сондықтан,









Торлы функцияның ішкі байламдарындағы мәндерін табу үшін алгебралық теңдеулер жүйесін табамыз.Шекаралық шарттан

(4)

болғанда байламдар жиынтығы қабат деп аталады. (2)-ден тізбекті мәндерді -нің қабатына лайықты мәндер арқылы -ді -қабатында табамыз. Мұндай схемалар айқындалған деп аталады.болғанда есеп басында бастапқы қабаттағы алғашқы шартпен анықталатын келесі түрдегі шешім қажет :

(5)

Әрбір айырымдылық теңдеу (3) айқын схемаға қарағанда әрбір үш белгісіз нүктеде жаңа мағына қабатының мәндерін құрайды,сондықтан алдындағы қабаттың белгілі шешімдері арқылы бұл мәндерді лезде табуға болмайды.Олар айқынсыз схемалар деген атқа ие.Сонда (3) айырымдық схема сызықтық үш нүктелік теңдеулерден құралады, бірақ әрбір теңдеу тап осы қабаттың үш нүктесіндегі белгісіз функциядан тұрады.Ол айдап шығу әдісімен шешіледі.

Тап осы мысалда екі қабатты схеманы қарастырдық,яғни әрбір айырымдылық теңдеуге екі қабатты функция мәндері –төменгі,қайсыда шешімі табылған және жоғарғы,байламдағы шешімдері ізделуде кіреді.
Жинақтылық. Аппроксимация. Орнықтылық.
Алғашқы және шекаралық шарттары берілген дифференциалдық есеп дербес туынды теңдеулермен операторлық түрде құрастырылып жазылады.

(6)

Операторлық теңдеу негізгі дербес туынды теңдеу және қосымша алғашқы және шекаралық шарттарынан тұратын теңдеуден құралады. теңдеудің алғашқы және шекаралық шарттарының оң жағын бейнелейді, есептеу облысынан да, шекарадан да тұрады. (6) дифференциалдық есепті айырымдылық есебімен алмастырамыз , мұндағы , мұндағы .

(7)

сеткалар байламдарында торлар функциясының мәнін ізделінетін функцияның мәндерін жуықтап сол байламдағы қателіктермен алмастырады.

. (8)

енгіземіз.

Егер (9) байламдар торлары қоюланса, яғни бұл қателіктер мәндері нөлге ұмтылады,олай болса айырымдылық схема (7) қосылатын деп аталады.

Егер мұндағы , онда айырымдылық схемасы k-шы дәлдік ретті немесе жылдамдығымен қосылады деп те айтады. Тордағы қателікті есептеу үшін (7) теңдеуін жазайық. (7)-ге қойып, (10) аламыз.

Айырымдылық схеманың өлшемі байланыспау деп аталады (аппроксимация қателігі) .Өлшемдік сипаттамасын енгізейік.

(11)

болғанда аппроксимация һ-пен салыстырғанда k-ші ретті болады. (7) айырымдылық схема (6) негізгі дифференциалдық есепті аппроксимациялайды ,егер

(12)

яғни, торды ұсақтаса онда байланыспау нөлге ұмтылады.

Абсолютті (сөзсіз) аппроксимация кез-келген заң бойынша ешбір шартсыз байланыспаудың болғанда нөлге ұмтылатын аппроксимация түрін айтады.Шартты аппроксимацияда кеңістік және уақыт бойынша қадамдар өлшемдеріне кейбір шарттар қойылады. (7) айырымдылық схемасы орнықтылықтанған деп аталады,егер оның шешімі кіретін мәліметтермен үзіліссіз байланыста болса, яғни кіретін мәліметтер шамалы аз өзгерсе соған сай шешімнің мәндері де аздап өзгереді. Орнықтылық айырымдылық схемасының түрлі қателіктерге сезімталдығын сипаттайды.

Теорема: Егер (6) негізгі дифференциалдық есептің шешімі бар болса, ал (7) айырымдылық схемасы берілген (6) шешімді орнықтылайды және аппроксициялайды, сонда айырымдылық шешімі дәлдікке қосылады.

[1] - [5], кіріспе, 5 - тарау

Тақырып 2. Параболалық типті айырымдылық схемалары.

Екі қабатты орнықтылық схемалар класы.Энергетикалық тепе-теңдік.Бір өлшемді жылу өткізгіш теңдеуін дискреттеу.Шаблондары.Айырымдылық аппроксимация реті.Орнықтылықты Фурье әдісімен зерттеу.Бастапқы-шекаралық есептері.Алты нүктелік схемалар жиыны.Айқындалған және айқындалмаған схемалары.Кранк-Николсон схемасы.Аппроксимация реті,орнықтылығы.Жылу өткізгіштер теңдеуінің үш қабатты схемалары.Дюфонт және Франкель схемалары.Аппроксимация реті,орнықтылығы.Салмағы бар схемалары.Аппроксимация қателігі және орнықтылығы.Симметриялы және симметриялы емес схемалары.Бастапқы берілген бойынша орнықтылығы.Оң жағы бойынша орнықтылығы.
2.1-Параболалық типті теңдеулері айырымдылық схемалары

Параболалық типті теңдеудің классикалық мысалы жылу өткізгіштің теңдеуі болып табылады(диффузияя).Біртекті кеңістікте біртекті (энергия көзінсіз) жылу өткізгіштіктің теңдеуі мынандай түрде болады

. (2.1)

Егер де шекараларда х=0 және х=l функцияның ізделінетін мәні мына u(x,t) түрде берілсе
(2.2)

Яғни бірінші тектің шекаралык шарттары және одан баска, алғашқы шарттары берілген

u(x,0)=ψ(x), 0≤xl, t=0, (2.4)

онда (2.1)-(2.4) есепті жылу өткізгіштіктің теңдеуінің бірінші алғашқы-шектік есебі деп атайды (2.1).

Жылу алмасу теориясының терминінде u(x,t) – температураның кеңістіктік-уақыттық ауданында бөлінуі температураөткізгіштік коэфициенті, ал (2.2), (2.3) ϕ0(t), ϕl(t) функцияның көмегімен шекарада мынадай температура береді x=0 и x=l.

Егер де шекарада х=0 және х=1 туындылардың ізделінетін кеңістіктік мәні берілсе

(2.5) (2.6)

Яғни, екінші тектің шекаралық шарттары, онда (25.1), (2.5), (2.6), (2.4) есептерді (2.1) жылу өткізгіштік теңдеудің екінші алғашқы-шектік шарты дейді.Жылу алмасу теориясының терминінде шекаралық жылу ағындары берілген.

Егер кеңістіктік айнымалы бойынша шекарада сызықтық комбинациялы іздестірілетін функция берілсе

(2.7)

(2.8)

Яғни, үшінші тектің шекаралық шартында, онда (2.1), (2.7), (2.8), (2.4) жылу өткізгіштің үшінші алғашқы-шектік теңдеуі деп атайды (2.1).Жылу алмасу теориясының терминінде (2.7), (2.8) шекаралық шарттарды газ тәрізді және сұйықтық ортада жылу алмасу арасында және шекаралық саналы ауданда белгісіз температуралармен беріледі u (0,t), u(l,t).

Кеңістіктік жылу өткізгіштік аудандарында бірінші алғашқы-шектік шарт мынандай түрде болады



Сол сияқты (2.9) – (2.11) кеңістіктік теңдеулердің шарттары екінші және үшінші алғашқы-шектік шарттарға қойылады.

Практикада әрқашан жылу өткізгіштіктің алғашқы-шектік шарттар аралас шектік шарттармен қойылғанда, шекарада шекаралық шарттардың әр түрлі тектері беріледі.

2.1.2.Соңғы әр түрлі әдіс түсініктері.Параболойдтық типті теңдеуде соңғы әдісте қолдану.Негізгі анықтамалар, соңғы әр түрлі әдістермен байланысқан, (2.1)-(2.4) жылу өткізгіштік теңдеуін соңғы-әр түлі шешімдердің бірінші алғашқы-шектік шарттарды мысал ретінде қарастырамыз. Кеңістіктік-уақыттық ауданға қоямыз 0≤x≤l, 0≤t≤T соңғы-әр түрлі сетканы ω

(2.12)

Кеңістіктік қадаммен h=l/N және уакыт бойынша қадаммен τ=T/K (рис 2.1).

Екі қабатты уақытты енгіземіз:

tk=kτ -дың астындағы, u(xj,tk) іздестірілген функциясы, ( k=0 бөлінуі (2.4) (xj,t0)=ψ(xj)) белгілі бастапқы шартпен анықталады және tk+1=(k+1)τ үстіңгі қабатты уақыт, u(xjj,tk+1), j=0,1,…,N іздестірілген функциясы анықталуға жарайды.




2.1(сурет). Соңғы әр түрлі тор

(2.1.)-(2.4) (анықтамасы) есептерінің торлық функциясын j, k бүтін аргументтердің бірмәнділік көрсетулері функциясының мәні.

(2.12) берілген функцияға бірінші белгілі тордың функциясы, ал екіншісі – анықталуға жарайтын торлық функциясын енгіземіз.Оның анықталуы үшін

(2.1.)-(2.4) есептерінде (аппроксимациялаймыз) дифференциалдық операторлардың орнына ауыстырамыз.(«Сандық дифференциалдау» тақырыбын қараймыз),

(2.13)

(2.14)

(2.13) формуланы аламыз. (2.1.)-(2.4)-не (2.13),(2.14) қойсақ,соңғы әр түрлі жүйені аламыз.Мұндай есепке форма

(2.15)

j -барлық теңдеулеріне торлық функция белгілі, ескерту есептемей (2.15) байланысында анықталады. (2.15) байланысында (j=0, j=N) шектік шарттары j=1 және j=N-1 мәндеріне кіретін ,ал алғашқы шарты – k=0.

Егер (2.14) кеңістіктік айнымалыда дифференциалдық операторды үстіңгі уақыттық қабаттың соңғы әр түрлі байланысымен аппроксимацияласақ,

(2.16)

онда (2.13), (2.16)-ны (2.1)-(2.4) есептеріне қойсақ,бұл есептің соңғы әр түрлі түйенің белгісіз екенін көреміз.
(2.17)

Енді торлық функцияның үстіңгі уақыттың қабатын СЛАУ (2.17) үшдиагональды матрицаның шешімін табуға болады.Бұл СЛАУ формасы, жарамды өткізу әдісімен қолданылады да,осындай түрге келеді.


С
Белгілі схеманың шаблоны

Белгісіз схеманың шаблоны
оңғы әр түрлі жүйенің ш
аблоны деп оның соңғы әр түрлі түрінің геометриялық мағаналануын (түсіндірме) айтады.



2.2.сурет.Жылу өткізгіштіктің теңдеуінің соңғы әр түрлі схеманың белгілі және белгісіз шаблонына арналған.

2.2суретінде (2.15) белгілі және (2.17) белгісіз шаблондары берілген (2.1)-(2.4) есептерін соңғы әр түрлі схемамен аппроксимациялау.

(2.15) белгілі соңғы әр түрлі схемасының жазылған формасы

(2.18)

Үстіңгі уақыттық қабаттың шешімі (САТЖ шешімінсіз) шығарылады торлық функцияның астыңғы уақыттық қабаттың уақыттық шешімінен шығарылады да,шығарылуы белгілі ( k=0 шешімі торлық функциямен формаланып,бастапқы(2.4.) шартпен шығарылады). Бірақ бұл сұлбада заттық жеткіліксіздік бар,сондықтан ол тұрақты шарт болып табылады, оны τ және h торлық мінездемеден аламыз.

Басқа жағынан,белгісіз (2.17) соңғы әртүрлі схемасы осындай формада жазылған.

(2.19)

СЛАУ –ды шығару керек екендігіне алып келеді,бірақ бұл схема абсолютті-тұрақты.

(2.18), (2.19) схемаларды анализдейміз. Сол дұрыс шешімі белгісіз болсын,ол уақыт бойынша өседі,басқаша айтқанда . Сонда,(2.18) белгілі схемамен байланысты шығарылуының әр түрлілігі түсірілген салыстырудың дұрыстылығымен,сондай-ақ меншікті торлық йункцияның мәні келесі уақыттық қабатпен анықталады,яғни шығарылу уақыт бойынша өсетіні байқалады.

(2.19) белгісіз функцияның өсетін шығарылымы,керісінше,шығарылу дұрыстығына қарағанда көтерілген,яғни торлық функцияның үстіңгі уақыттық қабатымен анықталады.

Сурет түсудің шығарылуымен ауысады,яғни қарама-қарсы бейнемен: белгілі соңғы әр түрлі схеманың шығарылуымен көтеріледі,ал белгісіз түседі. ( 2.3 суретті қараңыз).


-нақты шешім

-белгісіз шешім

-белгіді шешім


2.3 сурет. Аппроксимацияның екі жақты әдісі

Бұл анализдің негізінде құрудың нақты белгілі – белгісіз соңғы әр түрлі схемаладың таразыларымен кеңістіктік соңғы әр түрлі операторлармен, сондай-ақ ұсақталған τ және h қадамымен нақты (белгісіз) шығарылуы ″вилканы″ алған,егер белгілі және белгісіз схемалар дифференциалдық есептерді және бұл тұрақты схемаларды аппроксимациялайды,онда сеткалық мінездемеге бағытталу және h нөлге ұмтылуы,белгілі және белгісіз схемаладың шығарылуы әр түрлі жақтан нақты шешімге ұмтылады.
Белгілі және белгісіз сұлбаның жылуөткізгіштік теңдеуінің оңай түрімен қарастырайық. (2.20) Қайда θ – шекті-әртүрлігінің барлық бөлшек сұлбасы, 1−θ – барлық белгілі бөлшек үшін, 0≤θ≤1. θ=1 тең болғанда толық белгісіз сұлба, θ=0 – барлық белгілі сұлба, ал θ=1/2 - Кранк-Николсон сұлбасы болады. Кранк-Николсон (θ=1/2) сұлбасына аппроксимация реті құрылады,яғни т.с.с. уақыт бойынша бір ретке жоғары болады, жай белгілі және белгісіз сұлбаға қарағанда.

Белгісіз және белгілі сұлбаның уақытқа абсолютті орнықты (2.20), яғни 1/2≤θ≤1 және орнықты шарттарға сәйкес 0≤θ<1/2 белгіленеді.

Сонымен, Кранк-Николсон сұлбасы (2.20) және θ=1/2 абсолютті орнықты және уақыт бойынша екінші ретті аппроксимацияға және кеңістіктегі х айнымалыға сәйкес келеді.
2.1.3. Құрамында туындысы бар шекаралық шарттың аппроксимациясы.

Математикалық физика есептерінде және жылуөткізгіштік есептердің дербес жағдайында, яғни шекараның есептелінетін облысының байламында шекаралық шарттың бірінші реті аппроксимацияланады. Екінші және үшінші ретті шекаралық шарттардың айырмашылығы, олардың айнымалы кеңістік бойынша ізделінетін функцияның бірінші ретті туындысы қатысады. Сондықтан, түрлі-шекті сұлбаның түйілісіне аппроксимация қажет. Бірінші ретті аппроксимация туындысының бағыты қарапайым нұсқа ретінде алынады:



Онда шекаралық жалпы жағдайының үшінші ретінің (2.7), (2.8) теңдеуі, түрлі сұлбаның екі шектік байламда ізделінетін функция мәні байланысады, сонда келесі өрнек түрінде беріледі:



Шекті-әр түрлілігінің аппроксимациялық ішкі байламда белгілі теңдеуді аламыз, үшінші алғашқы-шектік есеп үшін белгілі әр түрлі сұлбаны аламыз (2.1), (2.4), (2.7), (2.8).





Жаңа уақыттық қабатқа алгоритмдік өтуін белгілі сұлбаның көмегімен аламыз:



Яғни, алғашқы ізделінетін функцияның барлық ішкі жаңа уақыттық қабаты есептелінеді, содан соң шекарадағы мәндер анықталады.

Белгісіз соңғы-түрлі сұлбаны қолданып, дифференциалдық есепті аламыз:



Нәтижесінде жаңа уақыттық қабаттың шешімін табу үшін сызықтық алгебра теңдеуінің үш-диагональді матрицалар жүйесін қолданамыз. Белгілі және белгісіз сұлбаны қолданған кезде осыған ұқсас болады.

Шекаралық шарттың бірінші ретті аппроксимациясы жоғарыда көрсетілгендей қасиетке ие болады. Т.с.с. ішкі байланысуының аппроксимациясы шекаралық байланысуы тәртібі аппроксимациясы орындалады. Аппроксимациялық ретінің сетканы түгел байламын глобальді аппроксимациялық реті деп аламыз.

Аппроксимация ретті жоғарлауының шекаралық шартының белгілі бір әдісі екінші ретін дифференциалдық есеп болып табылады:



Егерде, белгілі сұлбаның алгоритімі есептің шешілуі жаңа уақыттың қабаты мен аппроксимациялық шекараның шартын қабылдамайды, бірақ принципиалдығы өзгермейді. САТЖ өзінің үш-диагональдығын жоғалтады егерде, белгісіз сұлба қолданылғанда(бірінші және екінші теңдікте үшеуі белгісіз болады). Үшінші теңдікті оңай алып тастау жолын қарастырамыз, яғни екінші және үшінші теңдіктерді комбинацияның сызықтық жолымен алуға болады. Бұл жағдайда диагональды матрицаның бұзылуы, сонымен қатар прагон әдісі де бұзылады.

Оны оңай жолымен қарастырайық, аппроксимациялық ретті шартын күшейтпелігінсіз аппроксимациялық қтынастың бйланыс саны. Иллюстрациялық подходты мынандай түрде көреміз.

Мысалы 2.1.

Үшінші алғашқы-шектік есептің параболалық теңдеуінде, құрамында конвекцияланған мүшелерінің құрамдамасы,(туындының пропорционалы ), іздеу функциясының шығу көздері, мүшелерін құрайды

(2.21)-(2.24) Шешімі.

Шекті-әртүрлігі сұлбасының теңдеуі, сетканың Шекті-әртүрлігінің белгісіз ішкі байланыста көреміз, (2.21):

(2.25)

Егер,бірінші тәртіптегі шекарлық шарттың туындысын (2.22) және (2.23) аппроксимациялық сұлба бойынша аламыз (оң және сол Шекті-әртүрлігін қою-арқылы)

Онда шекаралық шарттар бірінші тәртіп бойынша аппроксимацияланады және глобальді тәртібі, бірінші тәртіпке тең , барлық қалған байланыс аппроксимациялық тәртіп кеңістігі орын ауысуы екіге бөлінеді. Аппроксимациялық тәртіпті сақтауға және екіге теңдігін біз шекаралық байланысуда дәл есептелінген теңдеуіне қоямыз сонда аумақ нүктесінде x=0 болғанда Тейлор қатарына ауыспалы x үшінші туындыға шейін ,- аналогтық қатарының нүктелік ауданының x=l деп аламыз(функциясының жазылуы бойынша u(x,t) шекаралық байлаудан бірінші туынды алынады және екіншіні х бойымен аламыз):

(2.26)

. (2.27)

Әрі қарай екінші мәннің туындысын шекаралық байлануына қоямыз, дифференциалдық теңдеуін аламыз (2.21):



Алынған өрнектен шығады (2.26), бірінші туындының мәнін шекаралық ретімен, аламыз(2.27)

Қою аркылы яғни (2.22), және (2.23) аппроксимациялық кезінде сәйкес қосылуы алынғанда шекаралык байлануын қараймыз(осыдан алгебралык теңдеудің шекаралық байланысуын аламыз, осының әрқайсысындаекеуі белгісіз болады:

(2.28)

(2.29)

Осылайша,(2.28) - Шекті-әртүрлігінің аппроксимациясының шекаралық теңдеуінің үш түрі белгілі (2.22) сол жақ шекарада x=0 болады, яағни (2.29) - Шекті-әртүрлігінің аппроксимациялық үшінші-текті теңдеудің он жақ шекарада (2.23) x=l аппроксимацияның сол жақ ретін сақтайды, осылайша Шекті-әртүрлігінің аппроксимациясы (2.25) және дифференциалдық теңдеуінде де (2.21).

Жаза отырып шекралық Шекті-әртүрлігінің теңдеуінде (2.28), (2.29) сетканың функцияснда екінші мәнді ұстанады, алгебралық теңдеу (2.25),

(2.30)

САТЖ аламыз және үш-диоганальді матрицамен шығарылады.

(2.31)

(j = N, N-1, ... , 0.) (2.32)

Қабылдаған әдіс аппроксимациялық шеттік шарт, туынды бойынша кеңістіктегі орын ауыстыру, аппроксимацияның тәртібін көтеріп қана қоймай консерванттық соңғы-түрлі аппроксимацияда сақталу заңдары қолданылады, (2.21)-(2.24) дифференциалдық сәйкес есептер көрсетілген.

Аналогтық жақындауда шеттік есептерде дифференциалдық теңдеудің кез-келген түрінде қолдануға болады.
  1   2

Похожие:

Ф со пгу 18. 2/06 Қазақстан Республикасының Ғылым және Білім министрлігі iconҚазақстан республикасының білім және ғылым министрлігі қазақ инженерлік-техникалық академиясы
Оқу-әдістемелік кешен типтік бағдарлама бойынша құрастырылған. Қазақстан Республикасының мемлекеттік жалпы білім беретін стандартына...
Ф со пгу 18. 2/06 Қазақстан Республикасының Ғылым және Білім министрлігі iconФ со пгу 18. 2/05 Қазақстан Республикасының Білім және ғылым министрлігі
Есептеу техникасы және бағдарламалық қамтамасыз ету мамандығының студентеріне арналған
Ф со пгу 18. 2/06 Қазақстан Республикасының Ғылым және Білім министрлігі iconФсо пгу 18. 2/07 Қазақстан Республикасының Білім және ғылым министрлігі
Физика, математика және ақпараттық технологиялар факультеттің әдістемелік кеңесінде құпталған
Ф со пгу 18. 2/06 Қазақстан Республикасының Ғылым және Білім министрлігі iconФ со пгу 18. 2/05 Қазақстан республикасының ғылым және білім министрлігі
Оңтайландыру әдістері және операцияны зерттеу пәні бойынша тәжірибелік жұмыстарды орындауға арналған
Ф со пгу 18. 2/06 Қазақстан Республикасының Ғылым және Білім министрлігі iconПрограмма Нысанды ф со пгу 18. 3/37 Қазақстан Республикасының Білім және Ғылым министрлігі
Энергетика факультеттің оқулық-әдістемелік кеңеспен мақұлданған 20 ж. Хаттама №
Ф со пгу 18. 2/06 Қазақстан Республикасының Ғылым және Білім министрлігі iconҚазақстан республикасының білім және ғылым министрлігі қазақ ЕҢбек және әлеуметтік қатынастар академиясы әлеуметтік гуманитарлық факультеті
Республикасының Мемлекеттік білім беру стандартына сәйкес 050301 «Құқықтану» мамандығына арналған Қазақстан Республикасының білім...
Ф со пгу 18. 2/06 Қазақстан Республикасының Ғылым және Білім министрлігі iconФсо пгу 18. 2/07 Қазақстан Республикасының Білім және ғылым министрлігі
Онда формада қолданылатын әртүрлі кластардың үлкен саны және форманың өртүрлі компоненттері (командалык кнопкалар, реакциялау алаңы...
Ф со пгу 18. 2/06 Қазақстан Республикасының Ғылым және Білім министрлігі iconФсо пгу 18. 2/07 Қазақстан Республикасының Білім және ғылым министрлігі
Студенттерінің өздік жұмысын орындауға арналған әдістемелік нұсқау жұмыс бағдарламасы негізінде жасалған
Ф со пгу 18. 2/06 Қазақстан Республикасының Ғылым және Білім министрлігі iconФсо пгу 18. 2/07 Қазақстан Республикасының Білім және ғылым министрлігі
Студенттерінің өздік жұмысын орындауға арналған әдістемелік нұсқау жұмыс бағдарламасы негізінде жасалған
Ф со пгу 18. 2/06 Қазақстан Республикасының Ғылым және Білім министрлігі iconҚазақстан республикасы білім және ғылым министрлігі қазақ инженерлік-техникалық академиясы
«Макроэкономика» пәнінің оқу әдістемелік кешені Қазақстан Республикасының Білім және ғылым министрлігі бойынша типтік оқу бағдарламалары...
Разместите кнопку на своём сайте:
kk.convdocs.org



База данных защищена авторским правом ©kk.convdocs.org 2012-2019
обратиться к администрации
kk.convdocs.org
Главная страница